Rheological Behaviour and Model for Porous Rocks Under Air-Dried and Water-Saturated Conditions
نویسندگان
چکیده
Most rocks exhibit viscoelastic properties or time-dependent behavior during deformation. For example, peak strength and Young's modulus increase with loading rate in uniaxial compression tests. In the creep test, strain increases over time even though stress is maintained at a predetermined value. Such viscoelastic behavior is especially notable in porous rocks such as tuff and weathered rocks. In this study, we first present a brief review of the viscoelastic properties of porous rocks, and then propose a new rheological model based on constitutive equations previously proposed by the authors. The model consists of a spring and a dashpot. We assume that the constitutive equation described in a previous study can be applied to the spring. The viscosity of the dashpot is low prior to loading, and increases gradually with progressive loading. In creep testing at low stress levels, strain of the dashpot corresponds to creep strain because the spring constant does not decrease significantly at low stress levels. Experimental analysis of muddy sandstone, Oya tuff, Tage tuff and Kawazu tuff is compared with theoretical predictions. The measured and theoretical stress-strain curves are in good agreement. The increase in peak strength and Young's modulus with loading rate is well simulated by the model. The most important result of this study is that even at low stress conditions, strain of the dashpot is considerably larger than considered in previous studies. Our model provides a sound simulation of the difference in Young's moduli between air-dried and water-saturated conditions, where the difference is assumed to reflect the partitioning of strain into the dashpot. In water-saturated conditions, strain of the dashpot increases more rapidly than in air-dried conditions, and Young's modulus is consequently relatively small.
منابع مشابه
Bacterial Transport in Gas-sparged Porous Medium
To improve the feasibility of soil-aquifer remediation using bioaugmentation, more efficient methods are needed to widely disperse pollutant-degrading bacteria in porous media. Under water-saturated conditions, bacteria readily adhere to soil particles, but under unsaturated conditions, bacteria preferentially accumulate at the air-water interface. Air sparging a saturated porous medium produce...
متن کاملDistinct element modelling of the mechanical behaviour of intact rocks using voronoi tessellation model
This paper aims to study the mechanical behaviour and failure mechanism of intact rocks under different loading conditions using the grain based model implemented in the universal distinct element code (UDEC). The grain based numerical model is a powerful tool to investigate complicated micro-structural mechanical behaviour of rocks. In the UDEC grain based model, the intact material is simulat...
متن کاملFreeze fracturing of elastic porous media: a mathematical model.
We present a mathematical model of the fracturing of water-saturated rocks and other porous materials in cold climates. Ice growing inside porous rocks causes large pressures to develop that can significantly damage the rock. We study the growth of ice inside a penny-shaped cavity in a water-saturated porous rock and the consequent fracturing of the medium. Premelting of the ice against the roc...
متن کاملWater-induced granular decomposition and its effects on geotechnical properties of crushed soft rocks
The widespread availability of soft rocks and their increasing use as cheap rockfill material is adding more to geotechnical hazards because time-dependent granular decomposition causes significant damage to their mechanical properties. An experimental study was conducted through monotonic torsional shear tests on crushed soft rocks under fully saturated and dry conditions and compared with ana...
متن کاملNatural Frequency and Dynamic Analyses of Functionally Graded Saturated Porous Beam Resting on Viscoelastic Foundation Based on Higher Order Beam Theory
In this paper, natural frequencies and dynamic response of thick beams made of saturated porous materials resting on viscoelastic foundation are investigated for the first time. The beam is modeled using higher-order beam theory. Kelvin-voight model is used to model the viscoelastic foundation. Distribution of porosity along the thickness is considered in two different patterns, which are symme...
متن کامل